
Week 3 - Monday

 What did we talk about last time?
 Computing Big Oh
 Logarithms

Bitmap Manipulator

 Let f(n) and g(n) be two functions over integers
 f(n) is O(g(n)) if and only if
 f(n) ≤ c∙g(n) for all n > N
 for some positive real numbers c and N

 In other words, past some arbitrary point, with some arbitrary
scaling factor, g(n) is always bigger

 O establishes an upper bound
 f(n) is O(g(n)) if there exist positive numbers c and N such that f(n) ≤

cg(n) for all n ≥ N
 Ω establishes a lower bound
 f(n) is Ω(g(n)) if there exist positive numbers c and N such that f(n) ≥

cg(n) for all n ≥ N
 Θ establishes a tight bound
 f(n) is Θ(g(n)) if there exist positive numbers c1,c2 and N such that

c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ N

 Give a tight bound for n1.1 + n log n
 Give a tight bound for 2n + a where a is a constant
 Give functions f1 and f2 such that f1(n) and f2(n) are O(g(n)) but

f1(n) is not O(f2(n))

 If you can model a segment of code as a series of numbers, a
few equations might help you make sense of them

 Arithmetic series: ∑𝑖𝑖=1𝑛𝑛 𝑖𝑖 = 𝑛𝑛(𝑛𝑛+1)
2

is θ 𝑛𝑛2

 Geometric series: ∑𝑖𝑖=0𝑛𝑛−1 𝑟𝑟𝑖𝑖 = 1−𝑟𝑟𝑛𝑛

1−𝑟𝑟
▪ and the bound depends on r

 Harmonic series: ∑𝑖𝑖=1𝑛𝑛 1
𝑖𝑖

is θ log𝑛𝑛

 From a formal perspective, a type is a set of data values and
the operations you can perform on them

Type Values Operations

int Integers from -2147483648 to
2147483647

+, -, *, /, %, <<, >>, >>>, |, &

double Floating points numbers +, -, *, /, %

String All possible Java String objects +, length(), charAt(),
substring(), etc.

Wombat All possible Wombat objects toString(), eat(), etc.

 So, you have a type with operations
 Do you need to know how those operations are implemented

to be able to use them?
 No!
 In fact, in OOP (including Java), the data is usually hidden from you

 Enter the Abstract Data Type (ADT)
 It does something!
 We aren't necessarily concerned with implementation

 The idea of a Java interface has a strong connection to an ADT
 Let's look at the List<E> interface
 Some of its methods:
 boolean add(E element)
 void add(int index, E element)
 void clear()
 E get(int index)
 int size()
 boolean remove(Object o)

 There are lots of different ways of keeping a list of data
 The ListADT doesn't care how we do it
 And there are lots of implementations that Java provides:
 ArrayList
 LinkedList
 Stack
 Vector

 You can use whichever you think best suits your task in terms
of efficiency

 A bag is an ADT that is iterable but otherwise only has one
real operation

 Add
 Put an element in the bag

 It's a collection of things in no particular order
 A bag is also called a multiset
 The book talks about bags partly because it's hard to imagine

a simpler ADT

 The list ADT is not entirely standardized
 Some lists allow insertion at the beginning, end, or at arbitrary locations
 Some lists allow elements to be retrieved from an arbitrary location

 Let's focus on a list that allows the following operations
 Add
 Insert element at the end of the list

 Add at index
 Insert element at an arbitrary location

 Get
 Retrieve element from arbitrary location

 A stack is an ADT with three main operations
 Push
 Add an item to the top of the stack

 Pop
 Remove an item from the top of the stack

 Top
 Retrieve the item at the top of the stack

 Stacks are often implemented with a dynamic array or a
linked list

 A queue is an ADT with three main operations
 Enqueue
 Add an item to the back of the queue

 Dequeue
 Remove an item from the front of the queue

 Front
 Retrieve the item at the front of the queue

 Queues are also often implemented with a dynamic array or a
linked list

 We're not going to implement the bag ADT since it's very limited
 Instead, we'll focus on the following methods from our list ADT

(and a couple of other useful ones)
 Constructor
 Add: Insert element at the end of the list
 Get: Retrieve element from arbitrary location
 Size: Get the current number of elements stored

 For now, we'll implement the list with a dynamic array that holds
generic objects of type E

 This is essentially what you've been doing for Assignment 1

public class ArrayList<E> {
private E[] array;
private int size;

public ArrayList() {}
public int size() {}
public void add(E element) {}
public E get(int index) {}
boolean remove(Object o) {}

}

 Stacks
 Keep reading section 1.3

SCAN the QR CODE to REGISTER

 Keep reading section 1.3
 Start on Assignment 2
 Due Friday by midnight

 Keep working on Project 1
 Due Friday, September 20 by midnight

	COMP 2100
	Last time
	Questions?
	Project 1
	Assignment 2
	Quiz Post Mortem
	Big Oh, Big Omega, Big Theta
	Formal definition of Big Oh
	All three are useful measures
	Complexity practice
	Mathematical approaches
	ADTs
	Types
	ADTs
	Interfaces
	List implementations
	Bags
	Lists
	Stacks
	Queues
	List Implementation
	List implementation
	Array backed list
	Constructor Implementation
	Size Implementation
	Get Implementation
	Add Implementation
	Remove implementation
	Upcoming
	Next time…
	Slide Number 31
	Reminders

