
Week 3 - Monday



 What did we talk about last time?
 Computing Big Oh
 Logarithms
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 Let f(n) and g(n) be two functions over integers
 f(n) is O(g(n)) if and only if
 f(n) ≤ c∙g(n) for all n > N
 for some positive real numbers c and N

 In other words, past some arbitrary point, with some arbitrary 
scaling factor, g(n) is always bigger



 O establishes an upper bound
 f(n) is O(g(n)) if there exist positive numbers c and N such that f(n) ≤ 

cg(n) for all n ≥ N
 Ω establishes a lower bound
 f(n) is Ω(g(n)) if there exist positive numbers c and N such that f(n) ≥ 

cg(n) for all n ≥ N
 Θ establishes a tight bound
 f(n) is Θ(g(n)) if there exist positive numbers c1,c2 and N such that 

c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ N



 Give a tight bound for n1.1 + n log n
 Give a tight bound for 2n + a where a is a constant
 Give functions f1 and f2 such that f1(n) and f2(n) are O(g(n)) but 

f1(n) is not O(f2(n))



 If you can model a segment of code as a series of numbers, a 
few equations might help you make sense of them

 Arithmetic series: ∑𝑖𝑖=1𝑛𝑛 𝑖𝑖 = 𝑛𝑛(𝑛𝑛+1)
2

is θ 𝑛𝑛2

 Geometric series: ∑𝑖𝑖=0𝑛𝑛−1 𝑟𝑟𝑖𝑖 = 1−𝑟𝑟𝑛𝑛

1−𝑟𝑟
▪ and the bound depends on r

 Harmonic series: ∑𝑖𝑖=1𝑛𝑛 1
𝑖𝑖

is θ log𝑛𝑛





 From a formal perspective, a type is a set of data values and 
the operations you can perform on them

Type Values Operations

int Integers from -2147483648 to 
2147483647

+, -, *, /, %, <<, >>, >>>, |, &

double Floating points numbers +, -, *, /, %

String All possible Java String objects +, length(), charAt(),
substring(), etc.

Wombat All possible Wombat objects toString(), eat(), etc.



 So, you have a type with operations
 Do you need to know how those operations are implemented 

to be able to use them?
 No!
 In fact, in OOP (including Java), the data is usually hidden from you

 Enter the Abstract Data Type (ADT)
 It does something!
 We aren't necessarily concerned with implementation



 The idea of a Java interface has a strong connection to an ADT
 Let's look at the List<E> interface
 Some of its methods:
 boolean add(E element)
 void add(int index, E element)
 void clear()
 E get(int index)
 int size()
 boolean remove(Object o)



 There are lots of different ways of keeping a list of data
 The ListADT doesn't care how we do it
 And there are lots of implementations that Java provides:
 ArrayList
 LinkedList
 Stack
 Vector

 You can use whichever you think best suits your task in terms 
of efficiency



 A bag is an ADT that is iterable but otherwise only has one 
real operation

 Add
 Put an element in the bag

 It's a collection of things in no particular order
 A bag is also called a multiset
 The book talks about bags partly because it's hard to imagine 

a simpler ADT



 The list ADT is not entirely standardized
 Some lists allow insertion at the beginning, end, or at arbitrary locations
 Some lists allow elements to be retrieved from an arbitrary location

 Let's focus on a list that allows the following operations
 Add
 Insert element at the end of the list

 Add at index
 Insert element at an arbitrary location

 Get
 Retrieve element from arbitrary location



 A stack is an ADT with three main operations
 Push
 Add an item to the top of the stack

 Pop
 Remove an item from the top of the stack

 Top
 Retrieve the item at the top of the stack

 Stacks are often implemented with a dynamic array or a 
linked list



 A queue is an ADT with three main operations
 Enqueue
 Add an item to the back of the queue

 Dequeue
 Remove an item from the front of the queue

 Front
 Retrieve the item at the front of the queue

 Queues are also often implemented with a dynamic array or a 
linked list





 We're not going to implement the bag ADT since it's very limited
 Instead, we'll focus on the following methods from our list ADT 

(and a couple of other useful ones)
 Constructor
 Add: Insert element at the end of the list
 Get: Retrieve element from arbitrary location
 Size: Get the current number of elements stored

 For now, we'll implement the list with a dynamic array that holds 
generic objects of type E

 This is essentially what you've been doing for Assignment 1



public class ArrayList<E> {
private E[] array;
private int size;

public ArrayList() {}
public int  size() {}
public void add(E element) {}
public E get(int index) {}
boolean remove(Object o) {}

}















 Stacks
 Keep reading section 1.3



SCAN the QR CODE to REGISTER



 Keep reading section 1.3
 Start on Assignment 2
 Due Friday by midnight

 Keep working on Project 1
 Due Friday, September 20 by midnight
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